22 research outputs found

    Hydric stress-dependent effects of Plasmodium falciparum infection on the survival of wild-caught Anopheles gambiae female mosquitoes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Whether <it>Plasmodium falciparum</it>, the agent of human malaria responsible for over a million deaths per year, causes fitness costs in its mosquito vectors is a burning question that has not yet been adequately resolved. Understanding the evolutionary forces responsible for the maintenance of susceptibility and refractory alleles in natural mosquito populations is critical for understanding malaria transmission dynamics.</p> <p>Methods</p> <p>In natural mosquito populations, <it>Plasmodium </it>fitness costs may only be expressed in combination with other environmental stress factors hence this hypothesis was tested experimentally. Wild-caught blood-fed <it>Anopheles gambiae </it>s.s. females of the M and S molecular form from an area endemic for malaria in Mali, West Africa, were brought to the laboratory and submitted to a 7-day period of mild hydric stress or kept with water ad-libitum. At the end of this experiment all females were submitted to intense desiccation until death. The survival of all females throughout both stress episodes, as well as their body size and infection status was recorded. The importance of stress, body size and molecular form on infection prevalence and female survival was investigated using Logistic Regression and Proportional-Hazard analysis.</p> <p>Results</p> <p>Females subjected to mild stress exhibited patterns of survival and prevalence of infection compatible with increased parasite-induced mortality compared to non-stressed females. Fitness costs seemed to be linked to ookinetes and early oocyst development but not the presence of sporozoites. In addition, when females were subjected to intense desiccation stress, those carrying oocysts exhibited drastically reduced survival but those carrying sporozoites were unaffected. No significant differences in prevalence of infection and infection-induced mortality were found between the M and S molecular forms of <it>Anopheles gambiae</it>.</p> <p>Conclusions</p> <p>Because these results suggest that infected mosquitoes may incur fitness costs under natural-like conditions, they are particularly relevant to vector control strategies aiming at boosting naturally occurring refractoriness or spreading natural or foreign genes for refractoriness using genetic drive systems in vector populations.</p

    Hydric stress-dependent effects of Plasmodium falciparum infection on the survival of wild-caught Anopheles gambiae female mosquitoes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Whether <it>Plasmodium falciparum</it>, the agent of human malaria responsible for over a million deaths per year, causes fitness costs in its mosquito vectors is a burning question that has not yet been adequately resolved. Understanding the evolutionary forces responsible for the maintenance of susceptibility and refractory alleles in natural mosquito populations is critical for understanding malaria transmission dynamics.</p> <p>Methods</p> <p>In natural mosquito populations, <it>Plasmodium </it>fitness costs may only be expressed in combination with other environmental stress factors hence this hypothesis was tested experimentally. Wild-caught blood-fed <it>Anopheles gambiae </it>s.s. females of the M and S molecular form from an area endemic for malaria in Mali, West Africa, were brought to the laboratory and submitted to a 7-day period of mild hydric stress or kept with water ad-libitum. At the end of this experiment all females were submitted to intense desiccation until death. The survival of all females throughout both stress episodes, as well as their body size and infection status was recorded. The importance of stress, body size and molecular form on infection prevalence and female survival was investigated using Logistic Regression and Proportional-Hazard analysis.</p> <p>Results</p> <p>Females subjected to mild stress exhibited patterns of survival and prevalence of infection compatible with increased parasite-induced mortality compared to non-stressed females. Fitness costs seemed to be linked to ookinetes and early oocyst development but not the presence of sporozoites. In addition, when females were subjected to intense desiccation stress, those carrying oocysts exhibited drastically reduced survival but those carrying sporozoites were unaffected. No significant differences in prevalence of infection and infection-induced mortality were found between the M and S molecular forms of <it>Anopheles gambiae</it>.</p> <p>Conclusions</p> <p>Because these results suggest that infected mosquitoes may incur fitness costs under natural-like conditions, they are particularly relevant to vector control strategies aiming at boosting naturally occurring refractoriness or spreading natural or foreign genes for refractoriness using genetic drive systems in vector populations.</p

    Mango anthracnose disease: the current situation and direction for future research

    Get PDF
    Mango anthracnose disease (MAD) is a destructive disease of mangoes, with estimated yield losses of up to 100% in unmanaged plantations. Several strains that constitute Colletotrichum complexes are implicated in MAD worldwide. All mangoes grown for commercial purposes are susceptible, and a resistant cultivar for all strains is not presently available on the market. The infection can widely spread before being detected since the disease is invincible until after a protracted latent period. The detection of multiple strains of the pathogen in Mexico, Brazil, and China has prompted a significant increase in research on the disease. Synthetic pesticide application is the primary management technique used to manage the disease. However, newly observed declines in anthracnose susceptibility to many fungicides highlight the need for more environmentally friendly approaches. Recent progress in understanding the host range, molecular and phenotypic characterization, and susceptibility of the disease in several mango cultivars is discussed in this review. It provides updates on the mode of transmission, infection biology and contemporary management strategies. We suggest an integrated and ecologically sound approach to managing MAD

    Effects of larval growth condition and water availability on desiccation resistance and its physiological basis in adult Anopheles gambiae sensu stricto

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Natural populations of the malaria mosquito <it>Anopheles gambiae </it>s.s. are exposed to large seasonal and daily fluctuations in relative humidity and temperature, which makes coping with drought a crucial aspect of their ecology.</p> <p>Methods</p> <p>To better understand natural variation in desiccation resistance in this species, the effects of variation in larval food availability and access to water as an adult on subsequent phenotypic quality and desiccation resistance of adult females of the Mopti chromosomal form were tested experimentally.</p> <p>Results</p> <p>It was found that, under normal conditions, larval food availability and adult access to water had only small direct effects on female wet mass, dry mass, and water, glycogen and body lipid contents corrected for body size. In contrast, when females subsequently faced a strong desiccation challenge, larval food availability and adult access to water had strong carry-over effects on most measured physiological and metabolic parameters, and affected female survival. Glycogen and water content were the most used physiological reserves in relative terms, but their usage significantly depended on female phenotypic quality. Adult access to water significantly influenced the use of water and body lipid reserves, which subsequently affected desiccation resistance.</p> <p>Conclusions</p> <p>These results demonstrate the importance of growth conditions and water availability on adult physiological status and subsequent resistance to desiccation.</p

    Environmental stress and the fitness costs of plasmodium falciparum infection in the malaria mosquito anophele gambiae s.s

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    The implication of climate variability on household water management; perception and practices among rural womenfolk in four communities in Ghana

    No full text
    In most rural communities, women are the sole managers of water supply and sanitation and determine household water management choices and practices. This study investigated the perceptions and household water management practices among womenfolk within rural communities located in the Central Tongu district and the Ada East districts of Ghana. Data collection instruments included household surveys, direct observation and focus group discussions of women within the study communities. The data were analysed using statistical tools embedded in the Statistical Package for the Social Sciences software. Results indicate that socio-demographic factors such as age, education, occupation and cost of water sources shaped household water management decisions. Furthermore, respondents’ perception of climate variability and climate adaptation was low and this, in turn, influenced household water management practices. The paper recommends that capacity building workshops be organized for rural women within the study communities to equip them with the skills to increase their income and in due course, improve their water management choices. Additionally, we suggest the promotion of climate variability and adaptation sensitization workshops of suitable household water management adaptation measures by government and Non-Government Organizations (NGOs) among rural communities

    Transmission indices and microfilariae prevalence in human population prior to mass drug administration with ivermectin and albendazole in the Gomoa District of Ghana

    No full text
    Abstract Background The Lymphatic Filariasis Elimination Programme in Ghana involves annual mass drug administration (MDA) of ivermectin and albendazole to persons living in endemic areas. This is repeated annually for 4–6 years to span across the reproductive lifespan of adult worms. In order to stimulate participation of community members in the MDA programme, this study was carried out to understand local views on transmission, management and prevention of the disease. The study also presents baseline transmission indices and microfilariae prevalence in the human population in eight endemic communities of coastal Ghana prior to the MDA. Methods A descriptive survey was carried out to explore perceptions on causes, treatment and prevention of lymphatic filariasis. Perceptions on community participation in disease control programmes were also assessed. After participants were selected by cluster sampling and 100 μl of blood sampled from each individual and examined for mf microfilariae. A similar volume of blood was used to determine the presence of circulating filarial antigen. Mosquitoes were collected simultaneously at all sites by human landing catches for 4 days per month over a six-month period. All Anopheles mosquitoes were dissected and examined for the larval stages of the parasite following which molecular identification of both vector and parasite was done. Results Eight hundred and four persons were interviewed, of which 284 (32.9 %; CI 31.1–34.5) acknowledged elephantiasis and hydrocoele as health related issues in the communities. Thirty-three people (3.8 %; CI 2.1–5.5) thought sleeping under bed net could help prevent elephantiasis. Microfilariae prevalence was 4.6 % (43/941) whiles 8.7 % (75/861) were positive for circulating filarial antigen. A total of 17,784 mosquitoes were collected, majority (55.8 %) of which were Anopheles followed by Culex species (40 %). Monthly biting rates ranged between 311 and 6116 bites/person for all the eight communities together. Annual transmission potential values for An. gambiae s.s. and An. funestus were 311.35 and 153.50 respectively. Conclusion Even though the highest mf density among inhabitants was recorded in a community that had the lowest Anopheles density with Culex species constituting 95 % of all mosquitoes collected, Anopheles gambiae s.s. and An. funestus remained the main vectors

    Data from: Experimental swap of Anopheles gambiae's assortative mating preferences demonstrates key role of X-chromosome divergence island in incipient sympatric speciation.

    No full text
    Although many theoretical models of sympatric speciation propose that genes responsible for assortative mating amongst incipient species should be associated with genomic regions protected from recombination, there are few data to support this theory. The malaria mosquito, Anopheles gambiae, is known for its sympatric cryptic species maintained by pre-mating reproductive isolation and its putative genomic islands of speciation, and is therefore an ideal model system for studying the genomic signature associated with incipient sympatric speciation. Here we selectively introgressed the island of divergence located in the pericentric region of the X chromosome of An. gambiae s.s. into its sister taxon An. coluzzii through 5 generations of backcrossing followed by two generations of crosses within the introgressed strains that resulted in An. coluzzii-like recombinant strains fixed for the M and S marker in the X chromosome island. The mating preference of recombinant strains was then tested by giving virgin recombinant individuals a choice of mates with X-islands matching and non-matching their own island type. We show through genetic analyses of transferred sperm that recombinant females consistently mated with matching island-type males thereby associating assortative mating genes with the X-island of divergence. Furthermore, full-genome sequencing confirmed that protein-coding differences between recombinant strains were limited to the experimentally swapped pericentromeric region. Finally, targeted-genome comparisons showed that a number of these unique differences were conserved in sympatric field populations, thereby revealing candidate speciation genes. The functional demonstration of a close association between speciation genes and the X-island of differentiation lends unprecedented support to island-of-speciation models of sympatric speciation facilitated by pericentric recombination suppression
    corecore